Hello again!
Time for another newsletter from the NCPA!

First, thank you to the people that helped us at the Concrete Paving Workshop. We served 350 for the Awards Lunch and had almost 400 people attend the workshop. Pictures of the Paving Award Winners appear later in the newsletter.

Brian Schmidt from Crete won the Raffle Prize, a 22 caliber Henry Golden Boy rifle. Congratulations to Brian!

We are adding new paving award categories for the 2016 Concrete Paving Workshop. They are:

- County Roads (making them separate from State Secondary Roads)
- General Aviation Airports
- Concrete Overlays

We will have at least four concrete overlays placed this year. They are:

- US 30 from Gothenburg west
- The Darr Bridge Road in Dawson County
- Part of Cunningham Road in Douglas County
- 535th Road just north of Fullerton

Surprisingly, asphalt prices have not followed the downward price trend that crude oil and gasoline exhibited. Prices are still running in the $550 to $700 price range, depending on oil grade.

Concrete prices are up about 5% nationwide.

Twelve from Nebraska visited the MnRoad test track in June. More later in the newsletter.

And just a reminder, we moved from our old office on Cornhusker Highway to a new office at 5700 Seward Avenue in Lincoln. Stop by and see our new digs!

Bill

Education and Research at the MnRoad Test Track

On June 10, 11, and 12, thirteen of us travelled to Minneapolis and Albertville, Minnesota to review the MnROAD Test Track and the research occurring at the Test Track.

The MnROAD test track was initially constructed between 1991-1993 and is one of the most sophisticated, independently operated pavement test facilities of its type in the world.

Some save-the-date items:

- The next Concrete Paving Workshop is Tuesday and Wednesday, January 19-20, 2016.
- The NC&AA Golf outing at the York Country Club August 3rd.
- The NC&AA Scholarship Fund Shoot at the Oak Creek Sporting Club near Brainard October 6.
- Concrete Cares at the Archway in Kearney September 27th.
The test track consists of three unique road segments made up of nearly sixty, 500 foot test sections:

- **3.5-mile Mainline Interstate roadway with “live” traffic (29,000 vehicles /day with 13% trucks with an Annual ESAL loading of about 1,000,000 ESALs in the driving lane and about 280,000 ESALs in the passing lane).**

- **3.5-mile bypass interstate roadway carrying “live” traffic when not on the mainline.**

- **2.5-mile closed-loop, Low-volume roadway loaded with an 80,000 pound 5-axle tractor trailer. The inside lane of the closed-loop roadway has carried 486,211 ESALs from 1994 through 2013.**

The Test Track has done real world research applications for PCC overlays, basic PCC thickness design, recycled unbound pavement materials, composite pavement studies, pervious concrete pavement studies, surface characteristics of PCC and HMA pavements, warm mix asphalt, low temperature cracking of HMA, and preventive maintenance of HMA pavements.

A newer test section includes using roller compacted concrete on shoulders, and for pavement patching.

We saw three pavement sections of I-94 that were placed in service in 1992. The sections consists of a 7.5” PCC dowelled pavement on top of a four-inch permeable asphalt base on top of a three-inch dense granular base on clay subgrade. The sections differ mainly by the joint spacings. Currently these three sections are being used on I-94 to test three types of pavement grinding for noise, friction, and splash. These three sections are providing service to about 29,000 vehicles daily, including about 13% trucks for an annual truck loading of about 1,000,000 ESALs each year in the driving lane.

For more information about MnRoad, see the website at: http://www.dot.state.mn.us/mnroad/

Thanks to Ben Worel and the MnRoad staff for the time they spent with us, and for closing the mainline of I-94 so we could review it.
New methods, concepts, materials and even new terminology are changing how concrete overlays are being promoted, designed and built. The industry has developed an optimal joint configuration for concrete overlays, 6x6x6 for short, describing panels that are 6 feet long by 6 feet wide by 6 inches thick. This standard configuration minimizes moment axle loadings, which in turn, reduces slab curling. While not completely universal this configuration is applicable for a wide array of projects from the national highway system to county roads.

And so the term “ultra thin whitetopping” is out. BCOAs, for bonded concrete overlay of asphalt, is in. BCOAs are one of five freshly designated variations of concrete overlay designs.

New materials support an emphasis on optimum durability rather than compressive strengths. A new emphasis on closely gauging maturity of fresh placements – opposed to accelerated curing – is changing how quickly concrete overlays are opened to traffic.

For example, in a 2014 Transportation Research Board paper, authors Kivi, Tighe, Fung and Grajek cite the example of Toronto.1 The city attacked rutting and shoving problems that refused to respond to regular maintenance. Their research showed concrete overlays and inlays are excellent rehabilitation options for urban pavements subjected to volumes of traffic. “The pavements are in very good condition visually, ride quality remains excellent and the recurrence of the regular rutting and shoving problems that were being observed prior to rehabilitation has been mitigated,” the authors say.

Unbonded concrete overlay on concrete (UCOC) is placed on milled asphalt pavement.

1 Rehabilitating Urban Pavements with Concrete: A Municipal Case Study by Aleks Kivi and Susan L. Tighe, PhD, P.Eng, Department of Civil and Environmental Engineering, University of Waterloo, Rico Fung, P.Eng, Cement Association of Canada, and Jozef Grajek, M.Sc., P.Eng, City of Toronto, Ontario (TRB, 2014).
‘Thin’ remains ‘in’

Thinner overlays of portland cement concrete remain a high priority for the concrete paving industry, but while hyperthin PCC overlays have been placed as pavement preservation measures, they are uncommon and most overlays don’t approach the thinness of as little as 1 or 2 inches the National Asphalt Pavement Association is promoting with Thinlay.

“There are no hard and fast rules as to what’s thin or not, but I would say 4 to 6 inches constitutes the thinner side of what we do,” said Jerry Voigt, president and CEO, American Concrete Pavement Association.

He added the volume of these thinner concrete overlays has increased in recent years. “Our volume of paving fluctuates every year, and we monitor that,” Voigt told Equipment World. “We also monitor overlays, and we now are between 10 to 15 percent of our total volume of paving now in concrete overlays. Eight to 10 years ago it was less than 5 percent, so we are excited about that growth. And half of today’s overlay volume is 6 inches or less.”

Also, ACPA has seen a dramatic change in application of overlays.

“We’ve seen a shift in concrete overlay placement,” Voigt said. “They used to take place mostly over concrete. Now they’re mostly over asphalt. Some two-thirds of the concrete overlays being placed are going down on asphalt pavements.”

Why the growth in concrete overlays? “Agencies can’t reconstruct everything that they might want to, so they are looking at different options for pavements,” Voigt said. “And they have been turning to the option of concrete overlays more than they have before.”

This growth in thinner concrete overlays takes place as the industry refines designs and terminology. “In the day, we used the term ultrathin whitetopping, which generally was used for concrete on asphalt,” Voigt said. “People still use those terms, but we have de-emphasized them. We prefer to talk about concrete overlays being bonded or unbonded, or on concrete or on asphalt.”

This has led to new terms describing concrete overlays:

- BCOA, bonded concrete overlay on asphalt, formerly called thin or ultrathin whitetopping
- BCOC, bonded concrete overlay on concrete
- UCOA, unbonded concrete overlay on asphalt
- UCOC, unbonded concrete overlay on concrete
- Bonded or unbonded concrete overlay on composite pavement (usually asphalt cap over concrete.

In general, bonded concrete overlays over asphalt will be thinner, and unbonded overlays over asphalt will be thicker. Composite pavements offer their own advantages, ACPA says. “You can take advantage of the asphalt cap,” Voigt said. “Typically, if an unbonded overlay is being placed, an interlayer of fabric or thin asphalt overlay will be required. With composite pavements you already have the asphalt layer there.”

The interlayer is required to bridge imperfections in the existing pavement to be paved over. “If your exist-
ing pavement is in worse structural condition, you can add an interlayer that will result in a thicker pavement, but bridge over the problems below,” Voigt said. “Whereas if you are bonding to the pavement below, you will not require an interlayer.”

On unbounded overlays, the concrete serves as a base layer, as opposed to actually carrying the load, says ACPA’s new technical services engineer, Eric Ferrebee. “The interlayer or bond-breaker distributes stress to the lower layer, but the base does not carry the load directly,” he says. “If it’s bonded, then the design requires the existing or bottom layer to carry more of the stresses, so you don’t have higher stresses in the overlay.”

Engineering the overlays

Today’s concrete overlays are engineered projects that involve evaluation field work to obtain cores, and to judge existing conditions and materials. These data determine, for example, whether to bond or not bond a concrete overlay.

This primarily depends on the condition of the existing pavement and whether it will carry part of the load of the overlaid structure, Voigt says. If it’s in good shape, you can use a bonded overlay. If not, an unbounded overlay is best.

Bonded overlays typically have been placed with a cement-in-water “grout” spread between lifts, but current practice has the grout eliminated and the concrete placed directly on the existing pavement. “It still will bond to concrete and older, oxidized asphalt,” Voigt said. “With newer asphalt, the surface may be milled, swept and blown to keep it clean. With concrete as well as asphalt bases, keeping them clean is the key.”

In unbounded overlays, the “bond breaker” or interlayer prevents the base layer from interfering with the performance of the overlay. The industry now is turning more to fabric interlayers instead of thin asphalt layers Voigt says. Typically this fabric will be around a quarter to a half-inch thick and helps cracks or joints in the underlying layer from reflecting to the surface layer. It also can help drainage, reduce bearing stresses and the effects of traffic loads, according to The Transtec Group.

Transtec says benefits include lower cost for material and installation, installation rates exceeding that of paving, and ease of construction, with placement requiring a minimum of training and equipment.

6x6x6 = success

Concrete always will crack as it cures, and the point of providing sawn joints is to control where it cracks. The industry has used a variety of joint configurations and

Montabert

Montabert breakers sense the hardness of material, adapting their power and strike frequency to deliver just the right amount of energy. You get the best possible performance every time, without all the wear and tear.

Save Room in your Schedule for

the 36th Annual

NCPA Concrete Paving Workshop

Tuesday & Wednesday

January 19-20, 2016

Are you a County or City staff member involved with contract administration?

See page 6 to find out how you can attend this year’s workshop for free!
recently has determined the 6 feet long by 6 feet wide by 6 inches thick joint configuration provides optimum overlay performance under most circumstances.

“One of the ideal benefits of having a 6x6x6 panel is that a joint always will fall between the wheels of an automobile,” ACPA’s Ferrebee said. “Because of that, we always will have one axle per panel at any time. That reduces the stress each panel will experience, keeps stresses at a reasonable level and our pavement in service longer.”

“Because the slabs don’t bend or flex so much, you can have a thinner slab stand up to the same truck loadings,” Voigt says.

Sawing of joints should take place as soon as the pavement has gained enough strength to resist raveling. Crack control joints can be one-third of the slab depth. By closely observing the curing of the slab, traffic can be allowed on the pavement without waiting for full compressive strengths to develop; that eliminates much of the need for accelerating additives in concrete overlays, Voigt said.

Two-lift overlays
Another recent concrete overlay technology transfer from the industry/ FHWA scan tour in 2006 that is gaining hold in the United States is two-lift paving, dubbed 2LCP, in which wet concrete is placed on wet concrete. The two lifts form a monolithic slab as they cure and set together.

Generally, the bottom layer, or bottom lift, consists of lower quality concrete, which can include locally available aggregates not suitable for surface use or recycled aggregates, according to Dr. Peter Taylor of the National Concrete Pavement Technology Center at Iowa State University, at a workshop in late 2013.

Higher-quality materials are used in the top layer or top lift, he added. “The top lift is generally the thinner of the two layers,” Taylor said. “As a result a lower volume of high quality concrete is needed. A high quality top lift provides better durability and skid resistance.”

2LCP is constructed as wet-on-wet concrete that not only helps to achieve better bonding between the layers, but also reduces the differential shrinkage problem, he added. This technique is being used now on reconstruction of the Jane Addams Memorial Tollway (I-90) – linking Rockford, Illinois, with O’Hare International Airport – by the Illinois State Toll Highway Authority. There, processed and tested fractionated reclaimed asphalt pavement is being used in the base. Dubbed “black rock” by the tollway authority, it enhances the “green” aspect of two-lift concrete paving. RW

36th Annual
NCPA Concrete Paving Workshop
Tuesday & Wednesday
January 19-20, 2016
Cornhusker Marriott
Lincoln, Nebraska

County and City staff involved with contract administration are eligible for Free Registration

Courtesy of Workforce Development funds available from the NDOR and FHWA

Questions? Email Bill at bcook@nebrconc.org

Reprinted courtesy of Equipment World
Asphalt Prices Show Negligible Change Amid Declining Oil Prices

Despite the depressed level of oil prices and the historical relationships between oil and asphalt price changes, asphalt prices reached a record high in December. Indeed, since June of 2014 oil prices declined 52 percent, but during the same time asphalt prices decreased just 0.4 percent with only a slight regress since the end of 2014.

The cement and concrete industry was concerned that as oil prices decay, concrete’s relative price position against asphalt would erode. Asphalt paved roads should have regained a competitive advantage over concrete pavement on both an initial bid and life-cycle cost basis. This may be explained by the impact of the increased introduction of cokers at oil refineries, which reduce or eliminate bitumen or liquid asphalt production. This could result in substantive reductions in asphalt supply at a time when cycle demand is increasing. In such an environment, the market dynamics could mask the lower input cost typically associated with low oil prices.

Some project bid information from NDOR lettings from October, 2014 through May 21st is available at the NCPA Website for asphalt work.

There are a few PCC projects also listed, including some local lettings.

The website can be accessed at www.nebrconc.org

HMA Prices

<table>
<thead>
<tr>
<th>Oct. 23, 2014</th>
<th>26-Feb-15</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPR AVERAGE:</td>
<td>$ 63.56</td>
</tr>
<tr>
<td>SPS AVERAGE:</td>
<td>$ 49.59</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11/13/14</th>
<th>12-Mar-15</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPR AVERAGE:</td>
<td>$ 68.13</td>
</tr>
<tr>
<td>SPS AVERAGE:</td>
<td>$ 58.91</td>
</tr>
<tr>
<td>LC AVERAGE:</td>
<td>$ 80.44</td>
</tr>
<tr>
<td>SLX AVERAGE:</td>
<td>$ 80.64</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12/4/14</th>
<th>16-Apr-15</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPR AVERAGE:</td>
<td>$ 59.64</td>
</tr>
<tr>
<td>SPS AVERAGE:</td>
<td>$ 50.13</td>
</tr>
<tr>
<td>Ultra Thin:</td>
<td>$ 98.95</td>
</tr>
<tr>
<td>SLH AVERAGE:</td>
<td>$ 62.75</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12/18/14</th>
<th>21-May-15</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPR AVERAGE:</td>
<td>$ 62.69</td>
</tr>
<tr>
<td>SPS AVERAGE:</td>
<td>$ 122.50</td>
</tr>
<tr>
<td>LC AVERAGE:</td>
<td>$ 147.49</td>
</tr>
<tr>
<td>SLX AVERAGE:</td>
<td>$ 92.45</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5-Feb-15</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPR AVERAGE:</td>
</tr>
<tr>
<td>SPH AVERAGE:</td>
</tr>
<tr>
<td>SPS AVERAGE:</td>
</tr>
<tr>
<td>ULTRA THIN AVG.:</td>
</tr>
</tbody>
</table>

Prices include:
Mix, oil, tack, lime (or WMA additive), & RAP incentive.
Where higher prices for SPS mix are shown, usually small quantities are involved.

Concrete Paving Costs

<table>
<thead>
<tr>
<th>Bid Order</th>
<th>Item</th>
<th>Quantity (SY)</th>
<th>Unit Price ($/SY)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Letting date: 13-Nov-14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>210</td>
<td>10” Dowelled</td>
<td>207,889</td>
<td>$ 35.48</td>
</tr>
<tr>
<td>Letting date: 4-Dec-14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>6” Bike Trail</td>
<td>5,584</td>
<td>$ 38.00</td>
</tr>
<tr>
<td>Letting Date: 18-Dec-14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>450</td>
<td>10” Dowelled</td>
<td>79,647</td>
<td>$ 41.62</td>
</tr>
<tr>
<td>750</td>
<td>9” Dowelled</td>
<td>20,704</td>
<td>$ 47.50</td>
</tr>
<tr>
<td>Letting Date: 15-Jan-15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>605</td>
<td>10” Pavement</td>
<td>1,021</td>
<td>$ 107.00</td>
</tr>
<tr>
<td>13” Pavement</td>
<td>132,465</td>
<td>$ 36.40</td>
<td></td>
</tr>
<tr>
<td>13” Dowelled</td>
<td>332,325</td>
<td>$ 44.85</td>
<td></td>
</tr>
<tr>
<td>Letting Date: 26-Feb-15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>155</td>
<td>9” Pavement</td>
<td>4,432</td>
<td>$ 44.00</td>
</tr>
<tr>
<td>9” Dowelled</td>
<td>19,058</td>
<td>$ 50.70</td>
<td></td>
</tr>
<tr>
<td>160</td>
<td>9” Pavement</td>
<td>17,058</td>
<td>$ 45.00</td>
</tr>
<tr>
<td>9” Pavement</td>
<td>946</td>
<td>$ 55.00</td>
<td></td>
</tr>
<tr>
<td>250</td>
<td>10” Dowelled</td>
<td>7,593</td>
<td>$ 52.00</td>
</tr>
<tr>
<td>650</td>
<td>9” Dowelled</td>
<td>15,967</td>
<td>$ 58.25</td>
</tr>
<tr>
<td>9” Pavement</td>
<td>8,987</td>
<td>$ 61.76</td>
<td></td>
</tr>
<tr>
<td>655</td>
<td>9” Dowelled</td>
<td>23,731</td>
<td>$ 56.00</td>
</tr>
<tr>
<td>Letting Date: March 12, 2015</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>600</td>
<td>7” Bike Trail</td>
<td>4,604</td>
<td>$ 49.00</td>
</tr>
<tr>
<td>Letting Date: April 16, 2015</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>205</td>
<td>6” Bike Trail</td>
<td>1,817</td>
<td>$ 39.00</td>
</tr>
<tr>
<td>7” Pavement</td>
<td>933</td>
<td>$ 67.00</td>
<td></td>
</tr>
<tr>
<td>9” Pavement</td>
<td>161</td>
<td>$ 67.00</td>
<td></td>
</tr>
<tr>
<td>Nance County Letting June 23, 2014</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6” PCC Overlay</td>
<td>4,460</td>
<td>$ 24.57</td>
<td></td>
</tr>
<tr>
<td>Note: bid as two items, Place at $6.50/SY and Furnish at $93.50/ Cu. Yd.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8” PCC Pmmnt</td>
<td>421</td>
<td>$ 45.00</td>
<td></td>
</tr>
<tr>
<td>Douglas County letting January 14, 2015</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lake Cunningham Road PCC Overlay</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6” PCC Overlay</td>
<td>8,211</td>
<td>$ 24.33</td>
<td></td>
</tr>
<tr>
<td>Note: bid as two items, Place @ $6.80/ SY and Furnish at $105/ Cu. Yd.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8” Pmmnt</td>
<td>1,545</td>
<td>$ 40.63</td>
<td></td>
</tr>
<tr>
<td>Dawson County Letting December10, 2014</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Darr Bridge Road Resurfacing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6” PCC Overlay</td>
<td>107,895</td>
<td>$ 23.10</td>
<td></td>
</tr>
<tr>
<td>Note: bid as two items, Place @ $4.60/ SY and Furnish at $100/ Cu. Yd.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9” Pmmnt</td>
<td>1,908</td>
<td>$ 40.00</td>
<td></td>
</tr>
<tr>
<td>NDOR Letting September 4, 2014</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>600</td>
<td>US 30 Gothenburg West</td>
<td>166,577</td>
<td>$ 22.17</td>
</tr>
<tr>
<td>Note: bid as two items, Place @ $4.34/ SY and Furnish at $94.88/CY. Includes $2.66/SY for Surface Preparation and Milling.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Note: smaller quantities probably indicate fixed form, hand placement, thus the higher costs.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The Quiet Pavement Solution

THE NEXT GENERATION CONCRETE SURFACE is the strategy of choice for ensuring quiet pavement solutions whenever and wherever they are needed. Using conventional diamond grinding equipment, NGCS textures can be quickly and efficiently constructed without impacting other roadway features such as guardrails, barriers, or curbs. A thin layer of the concrete surface is removed through the grinding process, achieving a smoother texture, and longitudinal grooves are installed. The grinding process can be accomplished in either a single or double pass operation.

Developed by Purdue University between 2006 and 2008, the surface represents the quietest non-porous concrete surface developed to date. The Purdue research, funded by the concrete industry, evaluated numerous diamond ground and cast-in-place textures on their Tire Pavement Test Apparatus. The “epiphany” moment during the research was the realization that upward protruding textures create much of the tire-pavement noise generation and that by minimizing these textures, a quieter concrete surface could be produced.

The NGCS approach is to develop a flatter and smoother surface that still possesses good microtexture and excellent macro texture. The smoother surface provides less protruding texture resulting in a lower overall noise level, while the grooves, which provide significant macrotexture, increase the resistance to hydroplaning by moving water out of the tire contact patch area. The NGCS surface can be constructed on new roadways or existing roadways.

>>> IT'S A QUALITY OF LIFE ISSUE

Today, in many urban areas, noise is clearly a quality of life issue for the public and represents one of the many competing factors in urban design and living. Safety, smoothness, capacity and noise are all important design issues that every owner/agency contends with when considering highway improvements. The quality of life issue is even being addressed within neighborhood groups, as well, as they become more and more aware of noise generation issues.

Recently there has been a growing interest in controlling noise at the source, namely, the pavement surface. Traditionally, noise is controlled through the use of walls or berms which are expensive but permanent. By controlling at the source, however, the noise levels generated are greatly reduced and may eliminate the need for the berms or walls.

For typical highway applications it should be noted that the noise contribution of cars and large trucks is quite different. Passenger cars, for example, generate about 70 to 90% of their total noise through the tire-pavement interaction. This fact implies that modification of the roadway surface (through techniques such as the NGCS surface) can meaningfully impact the overall tire-pavement noise when passenger cars are the main source of noise. Truck noise generation is less affected by pavement type and when trucks become the dominant noise source, pavement solutions of any type become less effective.

>>> THE BEAT GOES ON

Upon completion of the Purdue Research, which relied upon a device that simulated real world construction techniques, it was important to validate that the same results would be obtained when the NGCS surface was constructed on a real highway using real diamond grinding equipment.

The proof of concept testing was conducted in 2007 at the Minnesota DOT MnROAD low volume road facility. A test strip was successfully placed and tested; results verified both the Purdue research and the fact that conventional diamond grinding equipment could successfully place the texture. That same year, the first highway installation of this texture occurred on Chicago’s I-355 Tollway.

Minnesota constructed the first large NGCS project, implementing it as a noise solution for I-35 in the downtown Duluth area. Residents of the city were very pleased with the results, as indicated by the fact that local newspaper Duluth News Tribune published an article acknowledging its success on the front page.

According to the Sept. 21, 2010 article, “The surface treatment reduces noise substantially – by six decibels on the northernmost section of the I-35 megaproject, according to John Bray, MnDOT regional spokesman. Six decibels...
translates to an 80 percent reduction in the overall sound of vehicle tire noise. “It was shocking,” Bray said of the difference in noise levels. “I think it could be the key to reducing noise levels in big cities across the country.”

Justin Steinbach, general manager of the nearby Edgewater Resort and Waterpark, stated that before the installation of the NGCS, “the sound of I-35 traffic had been the number one complaint of hotel guests.” After the work was completed and the highway reopened, “we haven’t fielded one complaint,” Steinbach said.

Since its inaugural year in 2007, 11 states have or are placing NGCS surfaces. Currently California has more installed NGCS surfaces than all other states combined. However, in 2014, Texas awarded the largest NGCS project ever bid, demonstrating that the technology continues to grow.

The two largest quiet pavement research programs in the country, Virginia and California, have both evaluated the NGCS surface as part of their efforts. The Virginia Study, conducted by Virginia Tech Transportation Institute, reported the results as “… a measurable and noticeable decrease of more than 5 dB(A) for the NGCS. The NGCS is therefore a significantly better technology for concrete projects designed to decrease noise. Another advantage is that the NGCS seems to be the most reliable in terms of noise variability between different locations. Given the potential for improved lateral stability and the better hydroplaning resistance benefits of the NGCS, it is reasonable to conclude that this technology represents an attractive option as a quiet surface for concrete pavement projects.”

The California research study, conducted by U. C. Davis, reported that “…The GnG* surface texture was found to be quieter than the conventional diamond grinding (CDG), with lane average onboard sound intensity (OBSI) values on the GnG texture ranging from 99.5 dBA to 101.7 dBA, with an average of 100.8 dBA, compared with a range of 100.6 dBA to 104.7 dBA, and an average of 102.8 dBA measured on the CDG surface texture. The average OBSI level for all GnG sections was 100.8 dBA compared with an average of 102.8 for all CDG sections.” The research report also stated, “The IRI measurements showed that both CDG and GnG texturing treatments improved smoothness substantially compared with the pretreatment values. The average IRI was reduced from 142 in./mi for the preconstruction surface textures to 64 in./mi on average after the CDG treatment and to 49 in./mi on average after the GnG texture treatment.” The California results indicate that although placed as a noise solution, the NGCS also improves ride quality as well.

* In California the NGCS is called GnG

> **REFERENCES**

ABOUT IGGA

The International Grooving & Grinding Association (IGGA) is a non-profit trade association founded in 1972 by a group of dedicated industry professionals committed to the development of the diamond grinding and grooving process for surfaces constructed with Portland cement concrete and asphalt. In 1995, the IGGA joined in affiliation with the American Concrete Pavement Association (ACPA) to form what is now referred to as the Concrete Pavement Preservation Partnership (IGGA/ACPA CP3). The IGGA/ACPA CP3 now serves as the lead industry representative and technical resource in the development and marketing of optimized pavement surfaces, concrete pavement restoration and pavement preservation around the world.

>> BENEFITS

- Smoother Ride: IRI measurements indicate that NGCS provides a smoother, more uniform ride.
- Increased Safety: Diamond grooving provides improved traction and allows the road to maintain its texture longer, creating a safer road over the long-term.
- Decreased Noise: A smoother surface with a less protruding texture results in a lower overall noise level.
2014 NCPA Concrete Paving Awards

NH-136-7 (123), US-136
Auburn

Project Manager Plaque Mike Habegger NDOR District 1
Owner Certificates of Merit Troy Little NDOR District 1
Tim McCoy NDOR District 1
Jeff Fossenbarger NDOR District 1
Contractor Plaque Hawkins Construction Co.
Contractor Certificates of Merit Todd Allen Hawkins
Ron Mockelman Hawkins
Adam Russel Hawkins
Chris Blume Hawkins
Tom Crockett Hawkins
Designer Plaque Roger Nieman NDOR Roadway Design

Front Row (L to R): Joe Werning; Mike Habegger; Chris Blume; Randy Peters.
Middle Row (L to R): Troy Little; Adam Russel; Tom Crockett.
Back Row (L to R): Jeff Fossenbarger; Todd Allen; Ron Mockelman.
Runway 18-36 South Reconstruction
Eppley Airfield, Omaha

Owner Plaque
Owner Certificates of Merit
Tim Schmit
Tom Swanik
David Roth
Dan Owens
Omaha Airport Authority
Omaha Airport Authority
Omaha Airport Authority
Omaha Airport Authority

Contractor Plaque
Contractor Certificates of Merit
Hawkins Construction Co.
Nick Gaebel
Mitch Climer
Todd Allen
Jerrad Spoon
Hawkins
Hawkins
Hawkins
Hawkins

Eng. Rep. Certificates of Merit
Joe Oetken
Don McElravy
Andrew Rech
Mitch Kennedy
Bob Matlock
Josh Kankovsky
Brandon Scott
Lamp, Rynearson & Assoc.

Designer Plaque
Designer Certificates of Merit
Virgil H. Oligmueller
Andy Wester
Larry Lueders
Lamp, Rynearson & Assoc.
Lamp, Rynearson & Assoc.
Lamp, Rynearson & Assoc.
NH-75-2 (173), US-75, Plattsmouth-Bellevue, Platte River & South

Project Manager Plaque
Rick Fisher
Mike Fox
NDOR District 2
NDOR District 2

Owner Certificates of Merit
Pat Eisenmenger
Kyle Parsons
Christine Hansen
Mike Handzlik
NDOR District 2
NDOR District 2
NDOR District 2

Contractor Plaque
Hawkins Construction Co.

Contractor Certificates of Merit
Todd Allen
Ron Mockelman
Ron Schuster
Don Valla
Adam Russel
Tom Crockett
Hawkins
Hawkins
Hawkins
Hawkins
Hawkins

Designer Plaque
Andy Wiest
HDR, Inc.

Consultant Coordinator Plaque
Wahed Hassani
NDOR Roadway Design

Designer Certificates of Merit
Dan Volk
Troy Norviel
Dave Miner
Tony Kessler
HDR, Inc.
HDR, Inc.
HDR, Inc.
NDOR Roadway Design

Front Row (L to R):
Joe Werning; Christine Hansen; Dan Volk; Tony Kessler; Don Valla; Randy Peters.

Second Row (L to R):
Mike Handzlik; Wahed Hussani; Tom Crockett.

Third Row (L to R):
Andy Weist; Kyle Parsons; Adam Russel.

Back Row (L to R):
Mike Fox; Todd Allen; Rick Fisher; Ron Mockelman; Pat Eisenmenger.
Local Projects less than 30,000 Square Yards

Capehart Road, 60th St. to 48th St., Sarpy County

Front Row (L to R): Joe Werning; Bill Herr; Scott Austin; Bryan Kratky; Randy Peters.

Second Row (L to R): Dennis Wilson; Brett Wawers; Tyler Kulsan; Andy Wester.

Back Row (L to R): Tim Rife; Everett Owen; Travis Mann; Aaron Johnson; Rich Madson.

Owner Plaque
Sarpy County Public Works
Owner Certificates of Merit
Dennis Wilson
Bill Herr
Sarpy County Public Works
Sarpy County Public Works
Omaha
Omaha

Contractor Plaque
Luxa Construction Co., Inc.
Contractor Certificates of Merit
Armando Cardenas
Skyler Luxa
Luxa Construction Co., Inc.
Luxa Construction Co., Inc.

Bryan Kratky
Brett Wawers
Bob Matlock
Lamp, Rynearson & Assoc.
Lamp, Rynearson & Assoc.
Thiele Geotech

Designer Plaque
Scott W. Austin
Designer Certificates of Merit
Andy Wester
Lamp, Rynearson & Assoc.
Lamp, Rynearson & Assoc.
Lamp, Rynearson & Assoc.

Awards for Capehart Road, 60th St. to 48th St., Sarpy County.

2014 NCPA Concrete Paving Awards
2014 NCPA Concrete Paving Awards

S-75-2 (1059), US-75
Union South

Project Manager Plaque
Ryan Hobelman
NDOR District 1

Owner Certificates of Merit
Harvey Hemphrey
NDOR District 1
Bill Swanson
NDOR District 1
Craig Branch
NDOR District 1
Jason Loos
NDOR District 1
Mike Meyer
NDOR District 1
Seth Luse
NDOR District 1

Contractor Plaque
Cedar Valley Corp.

Contractor Certificates of Merit
Jason Hankins
Jim Glaspie
Cedar Valley Corp.
Corey Chew
Bryce Halupnick
Cedar Valley Corp.
Craig Silver
Richard Lee
Cedar Valley Corp.
Kenny Hoenig
Brian Ingram
Cedar Valley Corp.
Barry Beeh
Alan Diaz
Cedar Valley Corp.
Glenn McConnell
Cedar Valley Corp.

Designer Plaque
Carlos Leija
NDOR Roadway Design

Designer Certificates of Merit
Todd Hill
Previously NDOR Roadway Design
Currently NDOR Planning & Project Development

Front Row (L to R): Joe Werning; Carlos Leija; Ryan Hobelman; Harvey Hemphrey; Randy Peters.
Back Row (L to R): Jason Hankins; Bill Swanson.
2014 NCPA Concrete Paving Awards

STP-30-3 (116), US-30
Cozad -- Lexington

Front Row (L to R): Joe Werning; Gary Brinker; Korey Donahoo; Randy Peters.

Second Row (L to R): Darrell O’Neal; Gary Wendt.

Back Row (L to R): Nick Hollatz; Michael Beisner; Paul Gibbs.

Project Manager Plaque
Gary Brinker
NDOR District 6

Owner Certificates of Merit
Paul Gibbs
Michael Beisner
NDOR District 6

Contractor Plaque
Paulsen, Inc.
NDOR District 6

Contractor Certificates of Merit
Dave Neill
Darrell O’Neal
Rogelio Mendez
Sam Anderson
Gary Wendt
Nick Hollatz
Paulsen, Inc.
Paulsen, Inc.
Paulsen, Inc.
Paulsen, Inc.
Paulsen, Inc.
Paulsen, Inc.

Designer Plaque
Korey Donahoo
NDOR Roadway Design

Designer Certificates of Merit
Lorraine Legg
NDOR Roadway Design
STPD-92-5 (107), N-92
Platte River - US-81

Project Manager Plaque
Rick Kwiatkowski
NDOR District 4

Owner Certificates of Merit
Lynette Kowalski
NDOR District 4
Peggy Jackson
NDOR District 4
Rodney Wilson
NDOR District 4

Contractor Plaque
Chester Bross Construction Co.

Contractor Certificates of Merit
Tim Bennett
Chester Bross
Michael Rich
Chester Bross
John Dochterman
Chester Bross

Designer Plaque
Pavement Design Section, NDOR’s
Material & Research Division

Designer Certificates of Merit
Linda (Zip) Masek
NDOR, M&R Pavement Design
Mathew Bouwens
NDOR, M&R Pavement Design
Steve Nguyen
NDOR, M&R Pavement Design
13th Street, Cody Ave. - Hawthorne Ave., Crete

Owner Plaque
Owner Certificates of Merit
- City of Crete
- Mayor Roger Foster
- Tom Ourada
- Travis Sears
- Tom Busboom
- Judy Henning
- Dale Strehe
- Dave Bauer
- Charles Vyhnailek
- Jack Oelschager

Owner Plaque
Owner Certificates of Merit
- Mayor
- Crete Street Supt./Administrator
- Crete City Council

Contractor Plaque
Contractor Certificates of Merit
- M.E. Collins Construction Company, Inc.
- Dan Ludvik
- Trevor Ludvik
- Jaime Morales
- Louis Perez
- Joe Robichaud
- Lance Murry

Contractor Plaque
Contractor Certificates of Merit
- M.E. Collins
- Olsson Associates

Eng. Rep. Certificates of Merit
- Lance Murry

Eng. Rep. Certificates of Merit
- Olsson Associates

Designer Plaque
Designer Certificates of Merit
- Gilmore & Associates, Inc.
- Brandon Koinzan
- Richard Bogus
- Keith Gilmore

Designer Plaque
Designer Certificates of Merit
- Gilmore & Assoc.
- Previously with Gilmore & Assoc
- Currently a City of Columbus Engineer
- Gilmore & Assoc
- Gilmore & Assoc
Competitive Materials Report Update: January 2015

Producer Price Indices - Competitive Building Materials

<table>
<thead>
<tr>
<th></th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steel Mill Products</td>
<td>198.4</td>
<td>186.0</td>
<td>190.9</td>
<td>191.9</td>
<td>192.6</td>
<td>192.8</td>
<td>192.0</td>
</tr>
<tr>
<td>% Change Year Ago</td>
<td>-3.8%</td>
<td>-6.3%</td>
<td>2.6%</td>
<td>3.9%</td>
<td>4.3%</td>
<td>4.7%</td>
<td>3.5%</td>
</tr>
<tr>
<td>% Change Month Ago</td>
<td>0.1%</td>
<td>0.3%</td>
<td>0.1%</td>
<td>-0.4%</td>
<td>-0.3%</td>
<td>-1.3%</td>
<td>0.1%</td>
</tr>
<tr>
<td>Lumber</td>
<td>101.1</td>
<td>116.5</td>
<td>125.9</td>
<td>126.4</td>
<td>127.0</td>
<td>128.3</td>
<td>125.5</td>
</tr>
<tr>
<td>% Change Year Ago</td>
<td>3.5%</td>
<td>15.2%</td>
<td>8.1%</td>
<td>13.2%</td>
<td>11.4%</td>
<td>11.5%</td>
<td>6.8%</td>
</tr>
<tr>
<td>% Change Month Ago</td>
<td>-0.3%</td>
<td>0.5%</td>
<td>1.1%</td>
<td>-2.2%</td>
<td>-1.3%</td>
<td>1.1%</td>
<td>0.1%</td>
</tr>
<tr>
<td>Concrete Products</td>
<td>140.9</td>
<td>144.8</td>
<td>150.5</td>
<td>151.0</td>
<td>152.3</td>
<td>150.8</td>
<td>151.1</td>
</tr>
<tr>
<td>% Change Year Ago</td>
<td>2.0%</td>
<td>2.8%</td>
<td>3.9%</td>
<td>3.9%</td>
<td>4.9%</td>
<td>3.6%</td>
<td>3.8%</td>
</tr>
<tr>
<td>% Change Month Ago</td>
<td>0.4%</td>
<td>0.9%</td>
<td>-1.0%</td>
<td>0.2%</td>
<td>0.7%</td>
<td>0.9%</td>
<td>0.7%</td>
</tr>
<tr>
<td>Asphalt</td>
<td>228.7</td>
<td>229.7</td>
<td>233.9</td>
<td>233.1</td>
<td>235.3</td>
<td>235.3</td>
<td>236.3</td>
</tr>
<tr>
<td>% Change Year Ago</td>
<td>6.9%</td>
<td>0.4%</td>
<td>1.8%</td>
<td>2.0%</td>
<td>1.7%</td>
<td>1.6%</td>
<td>2.1%</td>
</tr>
<tr>
<td>% Change Month Ago</td>
<td>-0.2%</td>
<td>0.9%</td>
<td>0.0%</td>
<td>0.4%</td>
<td>0.4%</td>
<td>0.0%</td>
<td>0.1%</td>
</tr>
</tbody>
</table>

Source: Bureau of Labor Statistics

(p) = Preliminary data
Base Year: 2002 = 100
ONE MORE REMINDER

36th ANNUAL
NCPA Concrete PAVING WORKSHOP

CORNHUSKER MARRIOTT
LINCOLN, NE

City and County staff involved with contract administration are eligible for FREE conference registration

Watch your mail and www.nebrconc.org for more details as the date nears

Our Mission:

• TO assure that the quality of concrete pavement produced by the concrete paving industry members in Nebraska meets the highest standards.

• TO increase the market share of concrete pavement in highway and airport work within Nebraska

• TO serve the concrete paving industry members’ needs through effective leadership and representation with client agencies

• TO help the engineering community produce better and less costly designs for their clients

• TO recognize high quality design and construction through annual awards

William Cook, P.E
Executive Director

5700 Seward Ave., Suite B
Lincoln, NE 68507

Phone: 402-467-2662
Fax: 402-467-2775
Cell: 402-499-7105
Email: bcook@nebrconc.org
Contractor Members
A & R Construction
Cedar Valley Corp
Chester Bross Construction Company Constructors, Inc.
Diamond Engineering Co.
Elkhorn Paving Construction Company
Gehring Construction & Ready Mix.
Hawkins Construction Co. - Omaha
Interstate Highway Construction
Iowa Erosion Control
Koss Construction Company
Knife River Midwest, LLC
Paulsen, Inc.
TAB Holding dba TAB Construction
TCW Construction, Inc.
Ten Point Construction
Reede Construction, Inc.

Consultant Members
E&A Consulting Group
HDR Engineering, Inc.
JEO Consulting
Kirkham Michael Consulting Eng.
Lamp, Rynearson and Associates
Mid-State Engineering
Olsson Associates
The Schemmer Assoc.
Thiele Geotech

Individual Members
Sarpy County

Supplier Members:
Arps Red-E-Mix
Ash Grove Cement Co.
BASF Construction Chemicals, Inc.
Central Plains Cement
Concrete Industries, Inc.
Dakota Fluid Power
General Resource Technology
GCC of America
GOMACO Corporation
Holcim (US) Inc.
FSI By Thrasher
Kerford Limestone Co.

Logan Contractors Supply
Lyman-Richey Corp
Martin Marietta
Nebraska Ash Co.
PCA-North Central Region
Maxwell Products
Murphy Tractor & Equipment Co.
NMC, Inc
NEBCO, Inc.
Overland Sand & Gravel Co.
Ready Mixed Concrete Co.
RDO Truck
Rose Equipment, Inc.
Simplex Construction Supplies
Western Sand and Gravel Co.
Transwood Carriers
Richie Bros. Auctioneers

Explore the benefits of membership at
www.nebrconc.org